
BILKENT UNIVERSITY

ON THE SHELF

DETAILED DESIGN REPORT

CS491 SENIOR DESIGN PROJECT

Group T2420
Gülbera Tekin - 22003354

Defne Gürbüz - 22103295

Ümmügülsüm Sümer - 22103772

İrem Hafızoğlu - 22101848

Emirhan Büyükkonuklu - 22003049

Supervisor: İbrahim Körpeoğlu

Innovation Expert: İlyas Alper Karatepe

1. Introduction..3
1.1 Purpose of the system..3
1.2 Design goals...3
1.3 Definitions, acronyms, and abbreviations...4

2. Current software architecture.. 4
2.1 Competitors and Alternative Solutions... 4
2.2 What On The Shelf Offers?.. 5

3. Proposed Software Architecture..6
3.1. Overview... 6
3.2. High-Level Architecture Diagram.. 6
3.3. Subsystem Decomposition Diagram... 7
3.4. Deployment Diagram...8
3.5 Hardware/Software Mapping Diagram... 9
3.6. Data Flow Diagram..10
3.7. Class Diagram... 11

4. Subsystem Services.. 11
5. Test Cases.. 13
6. Consideration of Various Factors in Engineering Design............................... 24

6.1 Constraints... 24
6.2 Standards... 27

7. Teamwork Details...27
7.1 Contributing and functioning effectively on the team......................................27
7.2 Helping creating a collaborative and inclusive environment...........................27
7.3 Taking lead role and sharing leadership on the team.....................................28

8. Glossary... 28
9. References... 28

1. Introduction

 1.1 Purpose of the system

 In modern households, grocery management presents a persistent challenge,

often leading to inefficiencies in inventory tracking, meal planning, and shopping

organization. While various digital applications attempt to address these issues,

existing solutions lack a seamless, integrated approach. The primary purpose of the

On the Shelf application is to revolutionize grocery management by providing users

with a comprehensive tool that automates inventory tracking through receipt

scanning, suggests recipes based on available ingredients, and facilitates

collaborative shopping lists for households. By integrating these features into a

single platform, On the Shelf aims to minimize food waste, optimize grocery

planning, and enhance the overall user experience.

 1.2 Design goals

The On the Shelf application is designed to meet many key objectives to

ensure optimal usability and performance:

● Usability: The interface will be intuitive, enabling users of all technical

backgrounds to navigate and utilize features effortlessly.

● Performance: The system will operate efficiently, ensuring fast response

times for scanning receipts, updating inventory, and generating shopping lists.

● Reliability: The application will ensure consistent performance, minimal

downtime, accurate inventory tracking, and shopping recommendations.

● Marketability: On the Shelf is positioned as an innovative and unique grocery

management tool, differentiating itself from competitors through superior

integration and automation.

● Extendibility: The system will be designed to allow future expansions, such

as integration with smart home devices and external grocery delivery

services.

● Security: User data, including shopping habits and inventory records, will be

securely stored and protected against unauthorized access.

● Scalability: The architecture will support a growing user base without

performance degradation.

● Maintainability: The codebase will follow modular development principles to

ensure easy updates and bug fixes.

● Flexibility: The application will accommodate user preferences, including

dietary restrictions and household-specific shopping habits.

● Modularity: The system will comprise independent components for inventory

tracking, meal planning, and collaborative shopping lists, ensuring efficient

troubleshooting and enhancements.

● Aesthetics: The UI design will prioritize modern, visually appealing layouts

that enhance the user experience while maintaining simplicity and

functionality.

 1.3 Definitions, acronyms, and abbreviations

● OCR (Optical Character Recognition): A technology that extracts text from

scanned receipts for inventory updates.

● AI (Artificial Intelligence): Used in the application to suggest recipes and

optimize grocery planning.

● UI (User Interface): The application's graphical layout and interactive

elements.

● API (Application Programming Interface): Enables integration with external

services such as online grocery stores.

● Pantry Management: The process of tracking food inventory within a

household.

● Collaborative Shopping List: A shared list that multiple users can update in

real-time.

● Cloud Storage: A remote database where user inventory and shopping lists

are securely stored.

2. Current software architecture

2.1 Competitors and Alternative Solutions

The grocery management application market includes several competitors,

each offering partial solutions but failing to integrate essential features

comprehensively.

● Whisk [1]: Primarily a meal planning and recipe discovery app, lacking

inventory tracking and receipt scanning capabilities.

● KitchenPal [2]: Focuses on pantry management but lacks collaborative

shopping lists and automated inventory updates.

● Paprika [3]: A recipe manager with basic inventory tracking, but it does not

leverage current pantry data for meal suggestions.

● What’s Left [4]: Supports receipt scanning and inventory updates but lacks

personalized dietary preference management and sustainability features.

While these applications address certain aspects of grocery management,

they do not provide a unified platform that seamlessly integrates inventory tracking,

automated updates, meal suggestions, and collaborative shopping list functionalities.

2.2 What On The Shelf Offers?

On the Shelf overcomes the limitations of existing solutions by offering:

● Automated Inventory Tracking: Using OCR to automatically scan receipts

and update pantry contents.

● Personalized Meal Suggestions: AI-powered recipe recommendations

based on available ingredients and dietary preferences.

● Collaborative Shopping Lists: Shared lists that multiple household

members can update in real time.

● Sustainability Features: Tools to track expiration dates and reduce food

waste through optimized consumption.

Combining these features, On the Shelf establishes itself as a

comprehensive, user-centric grocery management solution that enhances efficiency,

reduces waste, and simplifies household grocery planning.

3. Proposed Software Architecture

3.1. Overview

This section provides a summary of our system’s structure. It outlines how the Flutter

mobile app interacts with cloud services like Firebase for authentication and data storage,

Cloud Functions and Cloud Run for serverless API and OCR processing, and external

services like the Spoonacular API for recipe recommendations. It provides diagrams and

highlights the key components and their interactions.

3.2. High-Level Architecture Diagram

Figure 1: High Level Architecture Diagram

This diagram shows the main software components and their interactions at a high

level.

Flutter Mobile App serves as the client interface.

Firebase manages core backend functionalities like user authentication, data

storage, and notifications.

Cloud Functions exposes RESTful APIs for business logic.

Cloud Run hosts Python-based OCR and processing service.

Spoonacular API provides external recipe recommendations.

The Flutter app communicates with Firebase for authentication and data; API

requests are routed through Cloud Functions to trigger OCR processing in Cloud

Run, which fetches recipe data from Spoonacular and updates Firebase.

3.3. Subsystem Decomposition Diagram

Figure 2: Subsystem Decomposition Diagram

This diagram breaks the system into functional subsystems

User and Household: Contain

s User Management, Household Management.

Inventory and Shopping: Encompasses Inventory Management and Smart

Shopping List generation.

Receipt Processing: Includes Receipt Scanning as well as the OCR & Fuzzy

Matching components.

Recipe Recommendation: Focused on integrating with the Spoonacular API.

Notifications: A separate component dedicated to sending alerts.

3.4. Deployment Diagram

Figure 3: Deployment Diagram

This diagram illustrates where our software components will be deployed and how

they interact:

User Device: The Flutter Mobile App runs on iOS/Android devices within the Mobile

OS Environment.

Google Cloud Environment:

Firebase: Hosting essential backend services like Authentication, Firestore, Storage,

and Firebase Cloud Messaging for notifications.

Serverless API: Cloud Functions expose API endpoints for user and inventory

operations.

OCR Processing Services: Cloud Run hosts our Python-based OCR and

processing services that extract text from receipts.

External API: The Spoonacular API is accessed for fetching recipe data.

The app communicates with Firebase for user authentication and data

synchronization, makes REST API calls to Cloud Functions, which in turn trigger

OCR processing on Cloud Run. Cloud Run updates inventory data and retrieves

recipe data from Spoonacular.

3.5 Hardware/Software Mapping Diagram

Figure 4: Hardware/Software Mapping Diagram

This diagram maps out which hardware and execution environments host our

software artifacts:

Mobile Device (iOS/Android): The Flutter Mobile App runs on the Mobile OS

Environment.

Google Cloud Platform is subdivided into:

Firebase Services: Runs authentication, real-time data storage (Firestore), and file

storage.

Backend Services: Consisting of Cloud Functions (handling API endpoints) and

Cloud Run (running the Python OCR & Processing service).

External Service: Spoonacular API is the external provider of recipe

recommendations.

This diagram is correlated with the Deployment Diagram, and there is a high

resemblance between the two. But they highlight different information.

3.6. Data Flow Diagram

Figure 5: Data Flow Diagram

This diagram provides a detailed view of how data moves through the system.

User Authentication and Household Management: Data from the Flutter app is

sent for login/registration; user data is validated and stored in Firestore.

Receipt Scanning and Inventory Update: When a receipt is uploaded, the image is

sent to the receipt scanning, and then processed by OCR, which goes through fuzzy

matching. Matched product data is used to update the inventory.

Smart Shopping List and Notifications: Inventory changes trigger the smart

shopping list generator, which reads inventory data and prompts notifications via the

notification system.

Recipe Recommendation: The app requests recipe suggestions by querying

current inventory; the recipe recommender calls the Spoonacular API and displays

the returned recipes.

3.7. Class Diagram

Figure 6: Class Diagram

4. Subsystem Services

The system is modularized into several subsystems, each providing services that

together fulfill the overall application functionality. Below is an overview of each

subsystem along with the services they provide.

1) User Management Service
a) User Registration and Login: Handles the creation and authentication

of user accounts using Firebase Authentication.

b) Profile Management: Allows users to update personal information and

preferences.

2) Household Management Service
a) Household Creation and Joining: Enables users to create households

and join them via invitation.

b) Membership Management: Manages the list of household members

and their roles.

3) Inventory Management Service
a) Product CRUD Operations: Allows adding, updating, and removing

products from the inventory.

b) Stock Monitoring: Checks inventory levels.

4) Receipt Processing Service
a) Receipt Scanning: Captures and uploads receipt images from the

mobile app.

b) OCR Processing: Uses Tesseract via Python to extract text from

receipt images.

5) Fuzzy Matching Service
a) Text Matching: Processes OCR output to match product names against

a standardized product dataset.

6) Smart Shopping List Service
a) List Generation: Automatically generates a shopping list based on

inventory.

b) Manual Editing: Allows users to modify the generated list.

7) Recipe Recommendation Service
a) Recipe Fetching: Uses the Spoonacular API to fetch recipe

suggestions based on available inventory and user dietary preferences.

b) Missing Ingredient Identification: Highlights ingredients that are missing

from the inventory.

8) Notification Service
a) Alert Generation: Sends push notifications for events such as expiring

products, low inventory, and shopping list updates.

b) Scheduling: Can schedule reminders based on user-defined criteria or

automated triggers.

5. Test Cases

Test ID TC01 Category Functional Severity High

Objective Verify that users can add an item to the pantry

Steps 1. Open the app
2. Navigate to the “Mutfağımdakiler”
3. Select a category
4. Click on the add button on the top right of the page
5. Enter item details and save

Expected The item is successfully added to the pantry.

Test ID TC02 Category Functional Severity High

Objective Verify that users can delete an item from the pantry

Steps 1. Open the app
2. Navigate to the “Mutfağımdakiler”
3. Select a category
4. Select an item
5. Click "Delete"

Expected The item is successfully removed from the pantry.

Test ID TC03 Category Functional Severity Medium

Objective Verify that users can edit an item in the pantry

Steps 1. Open the app
2. Navigate to the “Mutfağımdakiler”
3. Select a category
4. Select an item
5. Edit details and save

Expected The item details are updated successfully .

Test ID TC04 Category Functional Severity High

Objective Verify that users can filter items by category

Steps 1. Open the app
2. Navigate to the “Mutfağımdakiler”
3. Select a category

Expected Only items matching the selected category are displayed.

Test ID TC05 Category Functional Severity Medium

Objective Verify that users can search for items in the pantry

Steps 1. Open the app
2. Navigate to the “Mutfağımdakiler”
3. Select a category
4. Enter an item name in the search bar
5. View results

Expected Only relevant items appear in search results.

Test ID TC06 Category Functional Severity High

Objective Verify that users can input their allergies

Steps 1. Open the app
2. Navigate to the settings
3. Click manage allergens
4. Add allergies
5. Save

Expected Allergies are successfully saved.

Test ID TC07 Category Functional Severity High

Objective Verify that generated recipes exclude allergic ingredients

Steps 1. Set allergies
2. Navigate to “Tarifler”
3. Generate a new recipe

Expected Generated recipes do not include allergens.

Test ID TC08 Category Functional Severity High

Objective Verify that users can save recipes

Steps 1. Open recipes section
2. Click "Tarifi Kaydet"
3. Enter details and save

Expected The recipe is saved successfully.

Test ID TC09 Category Functional Severity High

Objective Verify that the app syncs data correctly

Steps 1. Add an item to the pantry
2. Restart the app

Expected The item remains in the pantry after restart.

Test ID TC10 Category Non-Function
al

Severity High

Objective Verify app loading time is under 3 seconds

Steps 1. Open the app

Expected The app loads within 3 seconds.

Test ID TC11 Category Non-Function
al

Severity Medium

Objective Verify app response time for adding an item

Steps 1. Add an item to the pantry
2. Measure response time

Expected The item is added within acceptable response time.

Test ID TC12 Category Functional Severity High

Objective Verify that users can log in using Firebase authentication

Steps 1. Open the app
2. Enter valid credentials
3. Click "Giriş Yap"

Expected User successfully logs in.

Test ID TC13 Category Functional Severity Medium

Objective Verify that users cannot log in with incorrect credentials

Steps 1. Open the app
2. Enter invalid credentials
3. Click "Giriş Yap"

Expected Error message is displayed.

Test ID TC14 Category Functional Severity High

Objective Verify that users can reset their password

Steps 1. Click "Şifremi Unuttum"
2. Enter email
3. Check email for reset link

Expected Password reset email is received.

Test ID TC15 Category Functional Severity Medium

Objective Verify that users can log out

Steps 1. Open settings
2. Click "Çıkış Yap"

Expected User is logged out and returned to login screen.

Test ID TC16 Category Functional Severity High

Objective Verify that users can update their profile information

Steps 1. Open profile settings
2. Edit details and save

Expected Profile updates successfully.

Test ID TC17 Category Functional Severity High

Objective Verify that the database updates in real-time

Steps 1. Open the pantry on two devices
2. Add an item on Device 1
3. Check Device 2

Expected The new item appears instantly on Device 2.

Test ID TC18 Category Non-Function
al

Severity Medium

Objective Verify that the app works properly in offline mode

Steps 1. Disable internet connection
2. Open the app
3. View the “Mutfağımdakiler”

Expected The app displays locally stored data.

Test ID TC19 Category Functional Severity High

Objective Verify that users can sort pantry items by name

Steps 1. Open the pantry
2. Click on the sort button
3. Select "İsme Göre Sırala"

Expected Items are sorted alphabetically.

Test ID TC20 Category Functional Severity Medium

Objective Verify that users can view a history of consumed items

Steps 1. Open the app
2. Navigate to "Tüketim Geçmişi"

Expected A list of previously used items is displayed.

Test ID TC21 Category Non-Function
al

Severity Medium

Objective Verify that the app does not drain battery excessively

Steps 1. Use the app continuously for an hour
2. Check battery consumption

Expected Battery usage remains within acceptable limits.

Test ID TC22 Category Non-Function
al

Severity High

Objective Verify that the app works on different screen sizes

Steps 1. Open the app on multiple devices

Expected The UI adjusts correctly for all screen sizes.

Test ID TC23 Category Non-Function
al

Severity Medium

Objective Verify that the app functions properly in dark mode

Steps 1. Enable dark mode in device settings
2. Open the app

Expected The app appears correctly in dark mode.

Test ID TC24 Category Functional Severity Medium

Objective Verify that pantry data only visible for users in same household

Steps 1. Log in with User u1 that is part of Household h1
2. Add an item to the pantry
3. Log out and log in with User u1 that is not a part of Household h1

Expected Pantry data from User u1 is not visible in User u2.

Test ID TC25 Category Functional Severity Medium

Objective Verify that users can clear all pantry data

Steps 1. Open settings
2. Click "Mutfağımdakileri sil"

Expected All pantry items are removed.

Test ID TC26 Category Non-Function
al

Severity High

Objective Verify that the app handles large amounts of data efficiently

Steps 1. Add 10,000 items to the pantry

Expected The app remains responsive and does not crash.

Test ID TC27 Category Functional Severity High

Objective Verify that the app extracts product details accurately from a clear receipt image

Steps 1. Open the app and
2. Select the "Fiş Okut" option
3. System processes the receipt and extracts product details
4. System displays extracted data for user confirmation
5. User confirms the data.

Expected The inventory is updated.

Test ID TC28 Category Functional Severity Medium

Objective Verify that users receive an error for an invalid receipt scan

Steps 1. Open the app
2. Click "Fiş Okut"
3. Scan an invalid receipt

Expected An error message is displayed.

Test ID TC29 Category Functional Severity Medium

Objective Verify that the system correctly identifies and adds low-stock items to the shopping
list

Steps 1.Ensure some products in the inventory are running low.
2.Open the app and navigate to the "Alışveriş Listesi" section.
3.Verify if low-stock items appear automatically in the list.

Expected The shopping list includes low-stock items with the correct quantities.

Test ID TC30 Category Functional Severity Medium

Objective Verify that users can remove incorrectly suggested items

Steps 1.Open the "Alışveriş Listesi" section.
2.Select an item from the list.
3.Click on the remove option.

Expected The item is successfully removed from the list.

Test ID TC31 Category Functional Severity High

Objective Verify that the OCR function works with receipts of different layouts and font styles

Steps 1.Collect receipts from different stores with varying formats
2.Scan each receipt using the app

Expected The OCR extracts and interprets text accurately across different receipt formats.

Test ID TC32 Category Functional Severity High

Objective Verify the OCR can handle lengthy receipts without truncation

Steps 1.Scan a long grocery receipt with more than 20 items

Expected The system extracts all items correctly without missing entries.

Test ID TC33 Category Functional Severity High

Objective Verify that the system correctly distinguishes between kitchen-related and
non-kitchen items

Steps 1.Scan a receipt containing both kitchen and non-kitchen products

Expected The system filters and only adds kitchen-related items to inventory.

Test ID TC34 Category Functional Severity High

Objective Verify that the system updates quantities instead of duplicating item

Steps 1.Scan a receipt containing items already in the inventory

Expected The system updates existing product quantities instead of adding duplicates.

Test ID TC35 Category Functional Severity Medium

Objective Verify OCR performance on faded or low-contrast receipts

Steps 1.Scan a faded receipt with light ink.

Expected The system accurately extracts text or prompts the user for manual verification.

Test ID TC36 Category Functional Severity High

Objective Verify that extracted product names are matched correctly with known kitchen
product datasets

Steps 1.Scan a receipt and allow the system to process it

Expected The system matches product names accurately with its kitchen product database.

Test ID TC37 Category Functional Severity High

Objective Verify that the system recommends recipes using current inventory items

Steps 1.Navigate to the “Tarifler” section
2.Check suggested meals

Expected Recipes use available ingredients.

Test ID TC38 Category Functional Severity Medium

Objective Verify users can join a household using the household ID

Steps 1.Navigate to "Eve Katıl."
2.Enter the household ID

Expected The user joins the household.

Test ID TC39 Category Functional Severity High

Objective Verify household creation works correctly

Steps 1.Navigate to "Household Management."
2.Click "Create Household."
3.Enter household name

Expected A new household is created.

Test ID TC40 Category Functional Severity High

Objective Verify that users in the same household have a shared pantry

Steps 1. User A logs into the app and adds an item to the pantry
2. User B logs into the same household account on a different device
3. User B checks the pantry

Expected The pantry data is identical for both users, and the item added by User A is visible
to User B

Test ID TC41 Category Functional Severity High

Objective Verify that users can delete their accounts successfully

Steps 1. User logs into the app
2. User navigates to the account settings page
3. User selects the "Hesabı Sil" option
4. User confirms account deletion
5. User attempts to log in again using the deleted account credentials

Expected The account is deleted, and the user is unable to log in with the deleted
credentials. All associated data is removed as per the app's policy

Test ID TC42 Category Functional Severity High

Objective Verify that users in the same household can add items to the shopping list and
that it is visible to all household members

Steps 1. User A logs into the app.
2. User A navigates to the shopping list section.
3. User A adds an item to the shopping list.
4. User B (who belongs to the same household) logs into their account.
5. User B navigates to the shopping list section.

Expected The item added by User A is visible in the shopping list for User B. All household
members can see and update the shared list.

Test ID TC43 Category Functional Severity Medium

Objective Verify that users in the same household can add notes to the shopping list and
that other household members can see them

Steps 1. User A logs into the app.
2. User A navigates to the notes section.
4. User A adds a note (e.g., "Get whole wheat").
5. User B (who belongs to the same household) logs into their account.
6. User B navigates to the notes section.

Expected The note ("Get whole wheat") are visible to User B and other household members.

Test ID TC44 Category Functional Severity Medium

Objective Verify that items in the pantry are placed in the correct category based on their
type

Steps 1. User logs into the app.
2. User adds various items to the pantry.
3. User navigates to the pantry section and checks the category labels.

Expected Items are automatically categorized correctly.

Test ID TC45 Category Functional Severity Medium

Objective Verify that users can leave a household successfully.

Steps 1.Navigate to settings and select "Aile Hesabından Ayrıl”
2.Confirm the action when prompted.
3.System removes the user from the household.

Expected User successfully leaves the household and is redirected to the household
management screen.

Test ID TC46 Category Functional Severity Medium

Objective Verify that duplicate email registration is not allowed.

Steps 1.Enter an email already used for another account.
2.Fill in the remaining fields and attempt to sign up.

Expected The app displays an error message for duplicate email

Test ID TC47 Category Functional Severity Low

Objective Verify that invalid email formats are rejected.

Steps 1.Enter an incorrectly formatted email (e.g., "user@com" or "user#email.com").
2.Click "Sign Up."

Expected The app displays an error message for user to enter a valid email

Test ID TC48 Category Functional Severity Medium

Objective Verify that duplicate products are prevented in the inventory.

Steps 1.Attempt to add a product with an identical name.

Expected System prompts to update quantity instead.

Test ID TC49 Category Functional Severity Medium

Objective Verify that users are prompted to provide missing product details.

Steps 1.Try adding a product without a name or quantity.

Expected System highlights missing fields and prevents submission.

Test ID TC50 Category Functional Severity Medium

Objective Verify that users can edit products in the shopping list.

Steps 1.Navigate to the "Alışveriş Listem" section.
2.Select an item and modify its name, quantity, or category.
3.Save the changes.

Expected The edited product details are updated in the shopping list successfully.

Test ID TC51 Category Functional Severity Medium

Objective Verify that users can delete products from the shopping list

Steps 1.Navigate to the "Alışveriş Listem" section.
2.Select an item and choose the delete option.
3.Confirm deletion.

Expected The selected item is removed from the shopping list.

6. Consideration of Various Factors in Engineering

Design

 6.1 Constraints

The following can be listed as constraints:

Aesthetics

● The user interface will emphasize a clean and visually appealing design,

ensuring an intuitive and clutter-free experience.

● Colors and icons will follow universal design principles to enhance

attractiveness and ease of use.

Code Standards

● The app will adhere to secure coding standards for mobile development,

ensuring reliability and protection against vulnerabilities.

Constructability

● A single Flutter codebase will ensure seamless deployment on both iOS and

Android platforms.

User Experience & Ergonomics

● The app will minimize user effort by incorporating automation features like

OCR for receipt scanning.

● Notifications will be designed to be simple and non-intrusive to avoid

overwhelming users.

Scalability & Extensibility

● The system architecture will support the easy integration of new features for

future improvements.

Core Functionality

● The app will deliver key features as outlined in the functional requirements,

including inventory tracking and recipe recommendations.

Cross-Device Compatibility

● Users will be able to sync their data across multiple devices under the same

account for a seamless experience.

Legal Compliance

● The app will adhere to data privacy regulations such as KVKK, ensuring user

information is protected.

Marketability

● The app will address key consumer challenges, such as reducing food waste

and simplifying grocery management, to attract a wide user base.

Policy Alignment

● The app will be designed in accordance with sustainability policies and

responsible consumption guidelines.

Regulatory Compliance

● Deployment on app stores will follow regional guidelines for both Google Play

Store and Apple App Store.

Development Timeline

● The project will adhere to a structured development schedule, including key

milestones for testing, feedback collection, and final release.

Industry Standards

● The app will be built in compliance with established mobile application

development standards.

Sustainability

● The app will encourage sustainable practices by promoting reduced food

waste and better resource management.

● Energy-efficient design principles will be implemented to minimize power

consumption during usage.

Minimum Hardware & Software Requirements

iOS

● OS Requirement: iOS 13 or later (for compatibility with Core ML and Vision

frameworks).

● Hardware Requirement: Devices with an A11 Bionic chip or newer (iPhone 8

and above) to support efficient OCR processing.

Android

● OS Requirement: Android 8.0 or later.

● Hardware Requirement: Devices with a minimum of 2GB RAM.

Global Accessibility

● Cross-platform availability on both iOS and Android will maximize global

reach.

Cultural Adaptability

● Recipe Recommendations: The app will provide region-specific recipes,

considering cultural dietary preferences.

● Shared Accounts: Sub-account functionality will support shared grocery

responsibilities in family-oriented cultures.

Social Impact

● Food Waste Reduction: The app will contribute to solving a major social issue

by minimizing food waste and encouraging responsible consumption.

● Inclusivity: Features such as accessibility settings and dietary customization

will cater to diverse user needs.

Environmental Responsibility

● Sustainability Focus: Encouraging users to reduce food waste will have a

positive environmental impact.

● Energy Efficiency: The app will be designed to consume minimal resources,

reducing energy consumption.

 6.2 Standards

● UML 2.5.1 for modeling

● IEEE 830 for requirements documentation

● IEEE for referencing style

7. Teamwork Details

 7.1 Contributing and functioning effectively on the team

Effective teamwork is essential for the successful development of the On the
Shelf application. The team members are responsible for contributing to various

aspects of the project, including system design, development, documentation, and

testing. Responsibilities are distributed based on expertise to ensure an efficient

workflow. Regular meetings, brainstorming sessions, and code reviews help maintain

alignment across different roles. Clear communication and task delegation allow the

team to meet deadlines while ensuring the quality and functionality of the system.

 7.2 Helping creating a collaborative and inclusive environment

A collaborative and inclusive environment is fostered through open

communication and teamwork. Team members actively participate in discussions,

share insights, and provide constructive feedback to improve the system design. The

use of collaborative tools, such as version control systems, shared documentation

platforms, and real-time messaging applications, ensures transparency and

accessibility for all members. Encouraging diverse perspectives helps refine ideas

and leads to a more user-centered and innovative solution.

 7.3 Taking lead role and sharing leadership on the team

Leadership within the team is shared, with different members taking the lead

in various aspects of the project. Some focus on defining system architecture, while

others oversee documentation, user interface design, or testing strategies.

Decision-making is a collective process, where team members contribute ideas and

collaborate to refine project objectives. Leadership roles shift depending on the task

at hand, allowing for flexibility and ensuring that all aspects of the project receive

adequate attention. By distributing leadership responsibilities, the team maintains a

balanced workflow and efficiently addresses challenges as they arise.

8. Glossary

● OCR: Optical Character Recognition

● GB: Gigabyte

● AI: Artificial Intelligence

● UML: Unified Modelling Language

● IEEE: Institute of Electrical and Electronics Engineers

● UI: User Interface

9. References

[1] "Whisk" [Online]. Available: https://www.whiskapp.net/. [Accessed 09 March

2025].

[2] "KitchenPal" [Online]. Available: http://kitchenpalapp.com/en/. [Accessed 09

March 2025].

[3] "Paprika" [Online]. Available: https://www.paprikaapp.com/. [Accessed 09 March

2025].

[4] "What’s Left" [Online]. Available: https://tellmewhatsleft.de/index_en.html.

[Accessed 09 March 2025].

	
	
	1. Introduction
	 1.1 Purpose of the system
	 1.2 Design goals
	 1.3 Definitions, acronyms, and abbreviations

	2. Current software architecture
	2.1 Competitors and Alternative Solutions
	2.2 What On The Shelf Offers?

	3. Proposed Software Architecture
	3.1. Overview
	3.2. High-Level Architecture Diagram
	
	3.3. Subsystem Decomposition Diagram
	3.4. Deployment Diagram
	3.5 Hardware/Software Mapping Diagram
	3.6. Data Flow Diagram
	
	3.7. Class Diagram

	4. Subsystem Services
	
	

	5. Test Cases
	6. Consideration of Various Factors in Engineering Design
	 6.1 Constraints
	 6.2 Standards

	7. Teamwork Details
	 7.1 Contributing and functioning effectively on the team
	 7.2 Helping creating a collaborative and inclusive environment
	 7.3 Taking lead role and sharing leadership on the team

	8. Glossary
	9. References

