

Bilkent University

Department of Computer Engineering
Senior Design Project

T2420

On the Shelf
Design Project Final Report

Team Members
22003354, Gülbera Tekin, gulbera.tekin@ug.bilkent.edu.tr

22103295, Defne Gürbüz, defne.gurbuz@ug.bilkent.edu.tr

22101848, İrem Hafızoğlu, irem.hafizoglu@ug.bilkent.edu.tr

22003049, Emirhan Büyükkonuklu, e.buyukkonuklu@ug.bilkent.edu.tr

22103772, Ümmügülsüm Sümer, ummugulsum.sumer@ug.bilkent.edu.tr

Supervisor
İbrahim Körpeoğlu

Course Instructors
Atakan Erdem

Mert Bıçakçı

02.05.2025

This report is submitted to the Department of Computer Engineering of Bilkent

University in partial fulfillment of the requirements of the Senior Design Project

course CS491/2.

1. Introduction 3
1.1 Overview 3
1.2 Competitors and Alternative Solutions 3
1.3 Why On the Shelf? 4

2. Requirements Details 5
2.1 Overview 5
2.2 Functional Requirements 5
2.3 Non-functional Requirements 6
2.4 Pseudo Requirements 6

3. Final Architecture and Design Details 7
3.1 Overview 7
3.2 Use Case Diagram 8
3.3 Scenarios 9
3.4 High-Level Architecture Diagram 19
3.5 Class Diagram 20
3.6 Subsystem Decomposition Diagram 21
3.7 Deployment Diagram 22
3.8 Hardware/Software Mapping Diagram 23
3.9 Data Flow Diagram 24
3.10 Activity Diagrams 25

4. Development/Implementation Details 27
4.1 Database 27
4.2 Backend 28
4.3 Frontend 29
4.4 Cloud Run 30

5. Test Cases and Results 33
6. Maintenance Plan and Details 55
7. Other Project Elements 56

7.1. Consideration of Various Factors in Engineering Design 56
7.1.1 Constraints 56
7.1.2 Standards 58

7.2. Ethics and Professional Responsibilities 58
7.3. Teamwork Details 59

7.3.1. Contributing and functioning effectively on the team to establish goals, plan
tasks, and meet objectives 59
7.3.2. Helping creating a collaborative and inclusive environment 59
7.3.3. Taking lead role and sharing leadership on the team 60
7.3.4. Meeting objectives 60

7.4 New Knowledge Acquired and Applied 61
8. Conclusion and Future Work 61
9. User Manual 63

9.1. Login, Sign Up and Forgot Password 63
9.2. Household Setup – Create or Join 64
9.3. Home Page Overview 65

1

9.4 Managing Your Pantry (Mutfağımdakiler) 66
9.5. Viewing and Editing Items in a Category 67
9.6. Using the Shopping List (Alışveriş Listem) 68
9.7. Adding and Managing Products 69
9.8. Notes Section (Notlarım) 71
9.9. Recipes Section (Tariflerim) 72
9.10. Generating New Recipes 73
9.11. Receipts Section (Fişlerim) 75
9.12. Reviewing and Editing OCR Results 76
9.13. Settings Page (Ayarlar) 77

10. Glossary 80
11. References 81

2

1. Introduction

1.1 Overview

In today’s fast-paced world, effective management of household tasks like

grocery shopping has become essential, yet challenges related to planning,

organization, and time management persist. Families and individuals often struggle

to maintain kitchen inventory, plan meals, and create precise shopping lists tailored

to their needs. While digital applications exist to address parts of this problem,

there’s still no comprehensive, user-friendly solution that integrates all these features

into a cohesive experience. In addition, On the Shelf, which provides innovations in

its field globally, takes its place in the application market to help Turkish users with

100% Turkish support.

On the Shelf introduces a grocery management app designed to simplify

many tasks. The app combines receipt scanning and manual input to track kitchen

inventory accurately. It also provides recipe suggestions based on available

ingredients in their pantries and users’ allergies, helping users maximize utility while

reducing food waste.

One of the key innovations is the collaborative element: family members can

work together by adding notes or updating the shopping list in real time, fostering

transparent and collective planning. By merging advanced tools with practical

features, the app aims to optimize resource utilization, minimize waste, and simplify

grocery shopping. Ultimately, it offers a balanced, socially integrated solution for

efficient and personalized household management, addressing gaps left by existing

tools.

1.2 Competitors and Alternative Solutions

The current market for grocery management applications features several

tools that offer fragmented solutions but omit critical integrated functionalities. Key

competitors include:

3

Whisk [1]: Focuses on recipe curation and meal planning but lacks tools for

inventory tracking or receipt scanning.

KitchenPal [2]: Specializes in pantry organization but lacks features like shared

shopping lists or real-time inventory updates.

Paprika [3]: Functions as a recipe hub with basic inventory logging but does not

utilize existing pantry stock to generate tailored meal recommendations.

What’s Left [4]: Offers receipt scanning and inventory updates but excludes

customization for allergy needs or eco-friendly usage tracking.

While these apps tackle isolated aspects of grocery management, none

deliver a cohesive system that combines real-time inventory tracking, receipt

scanning, adaptive meal planning, and collaborative list-building in a single interface.

This gap highlights the need for a unified platform addressing all these areas

seamlessly.

1.3 Why On the Shelf?

On the Shelf overcomes the limitations of existing solutions by addressing

these four issues:

● Automated Inventory Update: Using OCR to automatically scan/upload

receipts and update pantry contents.

● Personalized Meal Suggestions: Recipe recommendations based on

available ingredients and allergies of users.

● Collaborative Shopping Lists: Shared lists and notes that multiple

household members can update in real time.

● Pantry Tracking: All household members can see and update their pantry in

real time.

Combining these features, On the Shelf establishes itself as a

comprehensive, user-centric grocery management solution that enhances efficiency,

reduces waste, and simplifies household grocery planning.

4

2. Requirements Details

2.1 Overview

On the Shelf is designed to streamline daily kitchen and household

management tasks. The app allows users to scan or upload receipts to automatically

update their pantry inventory, manage food allergies, select meal types, and receive

personalized recipe recommendations. Users can save favorite recipes or explore

new ones. The application supports a household system that enables multiple users

to share a virtual kitchen, including a common pantry, shopping list, and note-taking

space. All updates are synchronized in real-time to ensure consistency across

household members. Users can either create a new household or join an existing

one using a join code.

2.2 Functional Requirements

User Registration and Authentication: The app shall allow users to create an

account, log in, and log out securely.

Profile Management: Users shall be able to manage allergy preferences, change

their password, leave the household, and delete the account.

Product Entry via OCR: Users shall be able to scan receipts using OCR technology

to automatically detect and store purchased items.

Manual Product Addition: Users shall have the option to manually add products

that were not detected by OCR.

Product Tracking: The app shall track products added, deleted or updated to the

user's shelf, including their quantities.

Shopping List Management: Users shall be able to create and manage shopping

lists manually and write notes to each other based on their product and brand

preferences.

Recipe Suggestions: The app shall suggest recipes based on the products

available on the user's shelf and the user’s allergy preferences.

5

Family Synchronization: Users shall be able to form households, allowing shared

access to shelf, shopping list and note data across multiple accounts.

Language Support: The app shall support Turkish.

2.3 Non-functional Requirements

Performance: The app shall respond to user inputs within 3 seconds under normal

conditions.

Scalability: The system shall be able to accommodate increased numbers of users

and data without significant degradation in performance.

Usability: The UI shall be intuitive and accessible, with support for Turkish users.

Security: User data, including authentication credentials and product data, shall be

stored securely and protected from unauthorized access.

Compatibility: The app shall be compatible with both Android and iOS platforms.

Maintainability: The system shall be modular and easy to update or extend for

future features.

Availability: The app shall be available 24/7 with minimal downtime.

Data Accuracy: OCR-detected products shall have a high accuracy rate so that

users do not need to make too many manual changes.

Synchronization: Data shared between family members shall remain consistent

and synchronized in real-time or with minimal delay.

2.4 Pseudo Requirements

● The app is developed using Flutter for cross-platform compatibility.

● Firebase is used for database, authentication, and cloud storage.

● Receipts are processed using OCR technology for text extraction.

● The initial version supports Turkish only.

● Spoonacular API is used for recipe suggestions.

● Azure Translation Service is used for recipe translation.

6

3. Final Architecture and Design Details

3.1 Overview

To better understand how the OnTheShelf system is structured and how it

behaves in real world scenarios, a series of diagrams have been created to guide

both design and development. These include visualizations of the core user

interactions, system architecture, deployment setup, data flow, and key workflows

like receipt scanning and recipe recommendation.

The diagrams cover a wide range of views. From high level system overviews

to detailed activity flows helping us map out how different components connect and

function together. They also illustrate how the mobile app communicates with cloud

services and external APIs, including Spoonacular for recipes and Azure for

translation.

By combining use cases, subsystem breakdowns, deployment architecture,

hardware-software mapping, and step-by-step process diagrams, we aim to provide

a clear, holistic picture of how the system works from both a technical and user

centered perspective.

7

3.2 Use Case Diagram

Figure 1: Use Case Diagram

8

3.3 Scenarios

Scenario 1: Registering an Account

Actors: User
Preconditions: User has installed the app.
Steps:

1. User opens the app and selects "Register".

2. User enters name, email, and password.

3. User confirms registration.

4. System creates the user account and logs the user in.

Scenario 2: Logging In

Actors: User
Preconditions: User has an existing account.
Steps:

1. User opens the app and selects "Login".

2. User enters email and password.

3. System authenticates the credentials and grants access.

Scenario 3: Updating Profile

Actors: User
Preconditions: User is authenticated.
Steps:

1. User navigates to profile settings.

2. User edits personal details (name, email, etc.).

3. User confirms changes.

4. System updates the user data in Firestore.

Scenario 4: Requesting Password Reset

Actors: User
Preconditions: User is not logged in and has forgotten the password.
Steps:

1. User selects "Forgot Password".

9

2. User enters their registered email.

3. User sets a new password.

Scenario 5: Creating a Household

Actors: User
Preconditions: User is not yet part of any household.
Steps:

1. User navigates to Household section and selects "Create Household".

2. User enters household name.

3. System creates the household and sets user as owner.

4. System generates an invitation code.

Scenario 6: Receiving Invitation Code

Actors: User
Preconditions: Household is created.
Steps:

1. System generates a unique code upon creation.

2. Code is displayed to the user to share with others.

Scenario 7:Joining a Household

Actors: User
Preconditions: User has received a valid invitation code.
Steps:

1. User opens “Join Household”.

2. User enters the invitation code.

3. System validates the code and adds user to the household.

Scenario 8: Leaving a Household

Actors: User
Preconditions: User is a current member of a household.
Steps:

1. User opens household settings and selects “Leave Household”.

2. System checks if user is the last member.

3. If yes, deletes the household; if not, simply removes the user.

10

Scenario 9: Deleting Empty Household

Actors: System
Preconditions: Last member leaves a household.
Steps:

1. System detects that no users remain.

2. Household is removed from Firestore.

Scenario 10: Viewing Inventory

Actors: User
Preconditions: User is in a household with existing inventory.
Steps:

1. User navigates to the Inventory tab.

2. System retrieves and displays product list with current stock info.

Scenario 11: Adding a Product to Inventory

Actors: User
Preconditions: User is part of a household.
Steps:

1. User navigates to the Inventory page.

2. User taps "Add Product".

3. User enters product name, category, unit, and quantity.

4. System adds the product to the household inventory.

Scenario 12: Editing Product Quantity

Actors: User
Preconditions: Inventory contains items.
Steps:

1. User navigates to Inventory.

2. User selects a product and chooses "Edit Quantity".

3. User updates the stock amount.

4. System saves the new quantity to the database.

Scenario 13: Categorizing a Product

11

Actors: User
Preconditions: Product is in inventory without a category.
Steps:

1. User selects a product.

2. User chooses a category.

3. System assigns the category and saves it.

Scenario 14: Searching for a Product

Actors: User
Preconditions: Inventory contains products.
Steps:

1. User enters a keyword in the Inventory search bar.

2. System filters and displays matching products.

Scenario 15: Viewing Shopping List

Actors: User
Preconditions: User is part of a household.
Steps:

1. User navigates to Shopping List page.

2. System displays all items currently on the list.

Scenario 16: Adding to Shopping List

Actors: User
Preconditions: User is part of a household.
Steps:

1. User selects “Add Item”.

2. User inputs product name and quantity.

3. System adds item to the shared shopping list.

Scenario 17: Creating a Note

Actors: User
Preconditions: User is viewing the shopping list.
Steps:

1. User selects “Add Note”.

12

2. User enters a note for the household.

3. System saves the note and makes it visible to all members.

Scenario 18: Viewing Notes

Actors: User
Preconditions: Notes exist in the system.
Steps:

1. User selects “View Notes” in the Shopping List page.

2. System displays all saved notes.

Scenario 19: Taking Photo of a Receipt

Actors: User
Preconditions: User has physical receipt.
Steps:

1. User opens the Receipt Processing feature.

2. User selects “Take Photo” and captures the image.

3. System uploads the image for OCR processing.

Scenario 20: Uploading a Photo of a Receipt

Actors:User
Preconditions: User has a saved image of a receipt.
Steps:

1. User selects “Upload Photo” from gallery.

2. Image is uploaded to the server.

3. System sends it for OCR extraction.

Scenario 21: Extracting Product Data from Receipt

Actors: User
Preconditions: A receipt image has been captured or uploaded.
Steps:

1. System receives the image.

2. System runs OCR to extract text.

3. Extracted lines are parsed into potential product data.

13

4. Results are sent back to the user for review.

Scenario 22: Matching Product Data

Actors: System
Preconditions: Extracted text exists from OCR.
Steps:

1. System compares OCR text to known products using fuzzy matching.

2. System suggests the closest product name, unit, and estimated quantity.

3. Matched results are prepared for user correction.

Scenario 23: Correcting OCR Output

Actors: User
Preconditions: Matched OCR output is available.
Steps:

1. User reviews detected products.

2. User selects products to edit, delete, or confirm.

Scenario 24: Deleting Wrongly Detected Product

Actors: User
Preconditions: User detected an incorrect product.
Steps:

1. User selects the line with an invalid product.

2. User taps "Delete".

3. System removes it from the final list.

Scenario 25: Editing Product Name

Actors: User
Preconditions: OCR result contains a misidentified product name.
Steps:

1. User selects the incorrect product.

2. User enters the correct name.

3. System saves the updated product name.

Scenario 26: Editing Product Quantity

14

Actors: User
Preconditions: Detected product has incorrect quantity.
Steps:

1. User selects the product.

2. User enters the correct quantity.

3. System updates the value.

Scenario 27: Editing Product Unit

Actors: User
Preconditions: Product unit is missing or incorrect.
Steps:

1. User selects the product.

2. User chooses or enters the correct unit

3. System updates the unit.

Scenario 28: Confirming and Updating Inventory After Receipt

Actors: User
Preconditions: OCR corrections are done.
Steps:

1. User taps "Confirm".

2. System adds/updates the corresponding products in inventory.

3. Inventory reflects new quantities.Ü

Scenario 29: Requesting Recipe Recommendations

Actors: User
Preconditions: Inventory and allergy data exist.
Steps:

1. User navigates to Recipes.

2. User selects cuisine preferences and household members.

3. System retrieves inventory and allergy info.

4. System sends request to Spoonacular API.

Scenario 30: Displaying Recipes

15

Actors: System
Preconditions: Recipe results are received.
Steps:

1. System receives recipes from Spoonacular.

2. System displays titles, images, ingredients, and preparation info.

3. User browses through the list.

Scenario 31: Saving a Recipe

Actors: User
Preconditions: User is viewing a recipe.
Steps:

1. User taps the “Save” icon or button.

2. System stores recipe in the user's saved list.

Scenario 32: Viewing Saved Recipes

Actors: User
Preconditions: User has saved one or more recipes.
Steps:

1. User navigates to “Saved Recipes” section.

2. System retrieves and displays saved recipes.

Scenario 33: Translating Recipe to Turkish

Actors: User
Preconditions: Recipe content is in English.
Steps:

1. Recipe text is sent to Azure Translation Service.

2. Translated content is received and displayed to the user.

Scenario 34: Managing User Account

Actors: User
Preconditions: App is installed.
Steps:

1. User either registers or logs in (covered in Scenarios 1 & 2).

2. User may update profile (Scenario 3) or request a password reset (Scenario
4).

16

Scenario 35: Managing Household

Actors: User
Preconditions: User has access to household features.
Steps:

1. User creates, joins, or leaves a household.

2. Invitation codes and cleanup of empty households are managed accordingly.

Scenario 36: Managing Inventory

Actors: User
Preconditions: Household exists.
Steps:

1. User adds, edits, searches, or categorizes inventory items.

2. Inventory is updated either manually or through receipt scanning.

Scenario 37: Managing Shopping List

Actors: User
Preconditions: Household exists.
Steps:

1. User adds items or notes to the shopping list.

2. Items and notes can be viewed and managed by any member of the
household.

17

3.4 High-Level Architecture Diagram

Figure 2: High-Level Architecture Diagram

The high-level architecture shows how different parts of the OnTheShelf

system work together to support the app’s features. The mobile app connects to

Firebase to handle things like login, household data, and inventory. When a user

scans a receipt, the image is sent to Cloud Run, where it's processed and matched

with known products. For recipe suggestions, the app uses Spoonacular, and if the

recipes are in English, it sends them to Azure Translation so users can view them in

Turkish.

18

3.5 Class Diagram

Figure 3: Class Diagram

 Due to the high level of detail in our class diagram, it is not fully visible within

the report. Therefore, we have included a link to our website where the full resolution

PNG version of the diagram can be viewed clearly. Click here to go to our website.

The class diagram outlines the modular structure of On the Shelf, organized

into main, backend, frontend, theme, and services. The main package initializes the

app and configures Firebase. The backend contains key features like authentication,

pantry management, receipt scanning with OCR, recipe suggestions, and shopping

lists, all built using Flutter widgets and Firebase services. UI styling is handled in the

frontend.theme package, while the services package includes helper classes like

FirestoreService and AzureTranslationService. The diagram highlights how these

components work together to support the app’s goal of efficient grocery management

and waste reduction.

19

https://ebuyukkonuklu.github.io/OnTheShelf-website/

3.6 Subsystem Decomposition Diagram

Figure 4: Subsystem Decomposition Diagram

The subsystem decomposition shows how the OnTheShelf mobile app is

organized into focused modules, each handling a specific part of the user

experience. The app separates concerns like user and household management,

inventory tracking, shopping list handling, receipt scanning, and recipe

recommendations. These modules connect to backend services on Google Cloud,

including Firebase for authentication and data storage, and Cloud Run for

processing receipt images. External APIs like Spoonacular provide recipe

suggestions, while Azure Translation helps make recipe content accessible in

Turkish.

20

3.7 Deployment Diagram

Figure 5: Deployment Diagram

The deployment diagram shows how OnTheShelf is distributed across mobile

devices, cloud services, and external APIs. The Flutter app runs on user phones and

connects to Google Cloud for backend logic, authentication, and data storage. OCR

tasks are handled by a Cloud Run service, while recipe data and translations are

fetched from Spoonacular and Azure.

21

3.8 Hardware/Software Mapping Diagram

Figure 6: Hardware Software Mapping Diagram

The hardware software mapping diagram shows how OnTheShelf’s software

components are deployed across physical and virtual environments. The mobile app

runs on iOS and Android devices, while backend services like OCR processing and

APIs run on Google Cloud infrastructure. Firebase handles authentication and

storage, and external APIs like Spoonacular and Azure Translation are accessed

remotely to support recipe and language features.

22

3.9 Data Flow Diagram

Figure 7: Data Flow Diagram

The data flow diagram illustrates how information moves through the

OnTheShelf system. From user inputs to backend components and external

services. It shows how user actions trigger updates to various data stores, how

receipt images are processed through OCR and matched, and how recipe data is

retrieved and translated before being displayed. The integration with Azure for

translation and Spoonacular for recipe suggestions completes a clear, end-to-end

data journey from input to intelligent output.

23

3.10 Activity Diagrams

Figure 8: Receipt Scanning Activity Diagram

This activity diagram shows the full process of scanning or uploading a

receipt, extracting and correcting product data, and updating the inventory based on

user confirmation.

24

Figure 9: Recipe Activity Diagram

This activity diagram outlines the process of generating recipe

recommendations based on inventory and preferences, translating them into Turkish,

and displaying the results to the user.

25

4. Development/Implementation Details

4.1 Database

The application uses Google Firestore, a NoSQL document database, to store

and manage its structured data. The Firestore database is organized into multiple

collections such as users, products, categories, allergens, households, and pantries,

each serving a distinct role in the application’s data architecture.

The households collection, for example, is designed to support collaborative

features within the app. Each document under this collection represents a household

and contains fields such as householdPantryID, householdName, invitationCode,

invitationCodeTimestamp, and an array of members, each member being identified

by their user ID. Each household document can also contain subcollections like

recipes, notes, receipts and shoppingList, enabling shared access and

synchronization between members of the same household.

Firestore was selected for its real-time synchronization features, seamless

integration with Flutter, and flexible schema structure. Its ability to handle nested

data (subcollections), automatic scalability. With Firestore, any update to pantry

items or shopping lists is reflected instantly across all user devices in the same

household.

To ensure data quality, validation is implemented in the Flutter frontend before

data is written to Firestore. Security rules are also defined to restrict unauthorized

access and enforce user-level and household-level permissions. Firestore’s

managed infrastructure reduces the overhead of backend maintenance. This allows

us to focus on feature development and improving the user experience.

26

4.2 Backend

The backend architecture of the application is based entirely on Firebase

services, eliminating the need for traditional server-side code. We used Firebase

Authentication to manage user registration and login, providing secure access

control across users and households.

Most of the backend logic is handled directly through Firestore operations

embedded within the Flutter frontend, which performs basic CRUD (Create, Read,

Update, Delete) operations. No custom HTTP requests (except for translation

service) or JavaScript code were written by us. The FirestoreService centralized

common Firestore operations, such as saving and updating product data across

pantry collections, ensuring efficient data management. We relied on

cloud-integrated services to extend functionality.

This serverless approach allowed us to focus on product features rather than

infrastructure, leveraging Dart and Flutter throughout for both frontend and

data-handling logic. Firebase’s tight integration with Flutter helped streamline

development and maintain a consistent codebase.

 The system incorporated some services and utilities to enhance its

functionality. The Spoonacular API is integrated to provide personalized recipe

recommendations based on user allergies, meal types, and cuisine preferences,

offering tailored suggestions aligned with pantry contents and dietary restrictions.

Additionally, the AzureTranslationService is used to translate recipe data from

Spoonacular into Turkish, utilizing Azure's translation API to handle the translation of

recipe content via HTTP calls, ensuring accessibility for Turkish-speaking users.

27

4.3 Frontend

The frontend of On the Shelf was developed using the Flutter framework,

which enabled the team to build a single, unified codebase that runs on both Android

and iOS platforms. The primary responsibility of the frontend was to present data to

users in a clear, visually appealing, and responsive manner, while also handling user

interactions smoothly.

Flutter SDK was chosen for its robust cross-platform capabilities and

expressive UI components. Dart, the programming language used with Flutter, was

utilized to construct the UI and manage state efficiently. The architecture was based

on a widget hierarchy, leveraging both stateless and stateful widgets to promote

code reusability and maintain consistency throughout the interface.

The application featured several key screens and components. The Home

Page displayed a greeting message alongside the app logo and the user's name,

with navigation buttons leading to core features such as settings, receipts, recipes,

the shopping list, and the pantry. The Shopping List Page allowed users to manage

items they needed to purchase, including their quantity, note-taking, and real-time

synchronization with household members. The Receipt Scanning Page integrated

OCR functionality to automatically extract product names from scanned or uploaded

receipts, streamlining pantry updates. The Recipe Suggestions Page offered meal

ideas based on available pantry items and the selected meal type, with filtering that

excluded allergen-containing recipes. The Pantry Page categorized and listed all

available items along with their quantities. Finally, the Settings Page allowed users to

edit their password, manage allergies, toggle between light and dark themes,

generate or join a household code, and perform critical actions such as deleting their

account, leaving the household, or clearing all pantry data.

Design-wise, the frontend adhered to Material Design principles to ensure a

familiar and user-friendly interface. Responsive design was implemented to

guarantee that the app rendered correctly on various screen sizes and resolutions.

Color themes were carefully defined and applied consistently across components,

such as buttons, to maintain a coherent visual identity. Theme support was also

included, offering both light and dark modes. Users could toggle between them

28

based on their preferences, and their selection was stored locally to ensure

persistence between sessions.

4.4 Cloud Run

This project integrates a Python based OCR and fuzzy product matching

module into a backend infrastructure using Google Cloud Run. The primary role of

this system is to receive receipt images from a Flutter mobile application, extract

meaningful product and quantity data from the image using Tesseract OCR, and

return structured information in JSON format. The entire pipeline is deployed

serverlessly, ensuring scalability, zero infrastructure management.

The backend is developed in Python and utilizes the Flask web framework to

expose an HTTP endpoint. The OCR is handled using the Tesseract engine via the

pytesseract wrapper, configured with Turkish language support. Image

preprocessing is applied using the Pillow library, which includes grayscale

conversion and automatic contrast enhancement. Fuzzy string matching is

implemented with fuzzywuzzy. The backend logic is containerized using Docker with

a base image and deployed to Google Cloud Run using Artifact Registry for storing

and managing container images.

The backend service is built and pushed to Google Artifact Registry using the

following commands:

docker build -t ocr-server .

docker tag ocr-server us-central1-docker.pkg.dev/on-the-shelf-2025/ocr1/ocr-server

docker push us-central1-docker.pkg.dev/on-the-shelf-2025/ocr1/ocr-server

Once pushed, the container is deployed to Cloud Run using:

gcloud run deploy ocr-server \

 --image=us-central1-docker.pkg.dev/on-the-shelf-2025/ocr1/ocr-server \

 --platform=managed \

 --region=us-central1 \

 --allow-unauthenticated

29

The service is then publicly accessible via HTTPS. The endpoint accepts

multipart/form-data POST requests and returns a structured JSON response.

Temporary image files used in processing are deleted immediately after use.

The server exposes a single POST endpoint: /process_receipt. The mobile

application sends a .jpg file using a multipart request. The image is saved

temporarily, processed for OCR and product matching, and then deleted. The result

is a JSON list of detected products with associated quantities and units, ready to be

displayed in the Flutter UI.

Each response object includes three fields: product (string), quantity (float),

and unit (string). If the system cannot determine a quantity or unit, it falls back to 0

and "unknown", respectively.

The core of the backend is the matching logic that attempts to identify grocery

products from noisy OCR output. After OCR processing, each line of text is

normalized by lowercasing and removing all non-alphabetical characters except

Turkish letters and spaces. The cleaned line is then evaluated using a two step

matching strategy.

The system first attempts to match the entire cleaned line against a list of 342

canonical Turkish grocery product names loaded from dataset.json. If a match is

found with a similarity score of at least 85, it is accepted. However, stricter rules are

applied to shorter matches: if the candidate product name has fewer than 5

characters, a minimum score of 95 is required to reduce false positives. If this

condition is met, the product is added to the result set and sliding matching is

skipped.

If the full line match fails to meet the threshold, the system generates sliding

substrings of length 5, 6, and 7 from the cleaned line. Each substring is

independently compared to the dataset entries. The best scoring match is retained.

For sliding matches, a slightly relaxed threshold of 80 is applied. However, if the best

match is shorter than 5 characters, the stricter 95 threshold still applies. This step

allows the system to recover from partial OCR errors or formatting inconsistencies

like splitting of words or missing letters.

30

Both matching stages are designed to be tolerant of common OCR issues

like, merged words, or noise characters. The fuzzywuzzy algorithm ensures that edit

distance, rather than exact spelling, drives the matching decision.

In parallel with product detection, the system attempts to extract numeric

quantity and measurement units from each original OCR line. Two regular

expressions are used to capture both space-separated and joined patterns like "300

g", "500ml", "6x1L". Units supported include grams (g, gr, kg), volume (ml, lt, l), and

count-based identifiers (adet, paket, kutu, x). If a valid pattern is found, the numeric

quantity is parsed as a float and normalized. If parsing fails or no unit is found, the

defaults of quantity 0 and unit of “unknown" are applied.

Once deployed, the Cloud Run service runs continuously and autoscaling is

handled by Google Cloud. Cold starts are minimal, and each request spins up an

isolated container that runs the Flask server. The endpoint is publicly accessible to

simplify mobile integration without the need for user authentication.

The Flutter mobile application captures a receipt image and encodes it as

multipart/form-data. The image is sent as a file field named receipt_image. The

backend responds with a JSON array of matched products and their quantities,

which the app uses to populate the inventory update screen for user confirmation

and editing.

The Tesseract OCR engine, despite being trained for Turkish, often

misinterprets characters under real-world conditions. Frequent failure modes

observed during testing are as follows. OCR tends to misread S as 5, G as 6, O as

0, B as 8, and vice versa. For example, “sosis” may appear as “5o5is” in OCR

output. Turkish characters like ğ, ç, ı, and ş are sometimes converted to their ASCII

equivalents or omitted entirely, e.g., “yoğurt” being scanned as “yogurt” or “yourt”.

Words may be joined without spaces or split arbitrarily across multiple lines, such as

“meyveliyogurt” instead of “meyveli yoğurt”. Borders, logos, and formatting

characters (x, *, -, :) may be introduced into the OCR lines and affect parsing and

matching. Also, the unstandardized receipts from across several companies make it

difficult for OCR to achieve 100% accuracy.

31

5. Test Cases and Results

Test ID TC01 Category Functional Severity High

Objective Verify that users can add an item to the pantry

Steps 1. Open the app

2. Navigate to the “Mutfağımdakiler”

3. Select a category

4. Click on the add button on the top right of the page

5. Enter item details and save

Expected The item is successfully added to the pantry.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC02 Category Functional Severity High

Objective Verify that users can delete an item from the pantry

Steps 1. Open the app

2. Navigate to the “Mutfağımdakiler”

3. Select a category

4. Select an item

5. Click "Delete"

Expected The item is successfully removed from the pantry.

Result/Notes Satisfactory - Tested on 01.05.2025.

32

Test ID TC03 Category Functional Severity Medium

Objective Verify that users can edit an item in the pantry

Steps 1. Open the app

2. Navigate to the “Mutfağımdakiler”

3. Select a category

4. Select an item

5. Edit details and save

Expected The item details are updated successfully .

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC04 Category Functional Severity High

Objective Verify that users can filter items by category

Steps 1. Open the app

2. Navigate to the “Mutfağımdakiler”

3. Select a category

Expected Only items matching the selected category are displayed.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC05 Category Functional Severity Low

Objective Verify that users can search for items in the pantry

Steps 1. Open the app

2. Navigate to the “Mutfağımdakiler”

3. Select a category

4. Enter an item name in the search bar

5. View results

Expected Only relevant items appear in search results.

Result/Notes Planned to be added in the upcoming version.

33

Test ID TC06 Category Functional Severity High

Objective Verify that users can input their allergies

Steps 1. Open the app

2. Navigate to the settings

3. Click manage allergens

4. Add allergies

5. Save

Expected Allergies are successfully saved.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC07 Category Functional Severity High

Objective Verify that generated recipes exclude allergic ingredients

Steps 1. Set allergies

2. Navigate to “Tarifler”

3. Generate a new recipe

Expected Generated recipes do not include allergens.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC08 Category Functional Severity Hightu

Objective Verify that users can save recipes

Steps 1. Open recipes section

2. Click "Tarifi Kaydet"

3. Enter details and save

Expected The recipe is saved successfully.

Result/Notes Satisfactory - Tested on 01.05.2025.

34

Test ID TC09 Category Functional Severity High

Objective Verify that the app syncs data correctly

Steps 1. Add an item to the pantry

2. Restart the app

Expected The item remains in the pantry after restart.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC10 Category Non-Function

al

Severity High

Objective Verify app loading time is under 3 seconds

Steps 1. Open the app

Expected The app loads within acceptable time.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC11 Category Non-Function

al

Severity Medium

Objective Verify app response time for adding an item

Steps 1. Add an item to the pantry

2. Measure response time

Expected The item is added within acceptable response time.

Result/Notes Satisfactory - Tested on 01.05.2025.

35

Test ID TC12 Category Functional Severity High

Objective Verify that users can log in using Firebase authentication

Steps 1. Open the app

2. Enter valid credentials

3. Click "Giriş Yap"

Expected User successfully logs in.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC13 Category Functional Severity Medium

Objective Verify that users cannot log in with incorrect credentials

Steps 1. Open the app

2. Enter invalid credentials

3. Click "Giriş Yap"

Expected Error message is displayed.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC14 Category Functional Severity High

Objective Verify that users can reset their password

Steps 1. Click "Şifremi Unuttum"

2. Enter email

3. Check email for reset link

Expected Password reset email is received.

Result/Notes Satisfactory - Tested on 01.05.2025.

36

Test ID TC15 Category Functional Severity Medium

Objective Verify that users can log out

Steps 1. Open settings

2. Click "Çıkış Yap"

Expected User is logged out and returned to login screen.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC16 Category Functional Severity High

Objective Verify that users can update their profile information

Steps 1. Open profile settings

2. Edit details and save

Expected Profile updates successfully.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC17 Category Functional Severity High

Objective Verify that the database updates in real-time

Steps 1. Open the pantry on two devices

2. Add an item on Device 1

3. Check Device 2

Expected The new item appears instantly on Device 2.

Result/Notes Satisfactory - Tested on 01.05.2025.

37

Test ID TC18 Category Functional Severity Low

Objective Verify that users can sort pantry items by name

Steps 1. Open the pantry

2. Click on the sort button

3. Select "İsme Göre Sırala"

Expected Items are sorted alphabetically.

Result/Notes Planned to be added in the upcoming version.

Test ID TC19 Category Functional Severity Medium

Objective Verify that users can view a history of consumed items

Steps 1. Open the app

2. Navigate to "Tüketim Geçmişi"

Expected A list of previously used items is displayed.

Result/Notes Planned to be added in the upcoming version.

Test ID TC20 Category Non-Function

al

Severity Medium

Objective Verify that the app does not drain battery excessively

Steps 1. Use the app continuously for an hour

2. Check battery consumption

Expected Battery usage remains within acceptable limits.

Result/Notes Satisfactory - Tested on 01.05.2025.

38

Test ID TC21 Category Non-Function

al

Severity High

Objective Verify that the app works on different screen sizes

Steps 1. Open the app on multiple devices

Expected The UI adjusts correctly for all screen sizes.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC22 Category Non-Function

al

Severity Medium

Objective Verify that the app functions properly in dark mode

Steps 1. Open settings

2. Enable dark mode

Expected The app appears correctly in dark mode.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC23 Category Functional Severity Medium

Objective Verify that pantry data only visible for users in same household

Steps 1. Log in with User u1 that is part of Household h1

2. Add an item to the pantry

3. Log out and log in with User u1 that is not a part of Household h1

Expected Pantry data from User u1 is not visible in User u2.

Result/Notes Satisfactory - Tested on 01.05.2025.

39

Test ID TC24 Category Functional Severity Medium

Objective Verify that users can clear all pantry data

Steps 1. Open settings

2. Click "Mutfağımdakileri sil"

Expected All pantry items are removed.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC25 Category Non-Function

al

Severity High

Objective Verify that the app handles large amounts of data efficiently

Steps 1. Add all the items in the database to the pantry

Expected The app remains responsive and does not crash.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC26 Category Functional Severity High

Objective Verify that the app extracts product details accurately from a clear receipt image

Steps 1. Open the app and

2. Select the "Fiş Okut" option

3. System processes the receipt and extracts product details

4. System displays extracted data for user confirmation

5. User confirms the data

Expected The inventory is updated.

Result/Notes Satisfactory - Tested on 01.05.2025.

40

Test ID TC27 Category Functional Severity Medium

Objective Verify that users receive an error for an invalid receipt scan

Steps 1. Open the app

2. Click "Fiş Okut"

3. Scan an invalid receipt

Expected An error message is displayed.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC28 Category Functional Severity Medium

Objective Verify that the system correctly identifies and adds the deleted items to the

shopping list

Steps 1.Ensure some products in the inventory are deleted

2.Open the app and navigate to the "Alışveriş Listesi" section

3.Verify if deleted items appear automatically in the list

Expected The shopping list includes low-stock items with the correct quantities.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC29 Category Functional Severity Medium

Objective Verify that users can remove incorrectly suggested items

Steps 1.Open the "Alışveriş Listesi" section

2.Select an item from the list

3.Click on the remove option

Expected The item is successfully removed from the list.

Result/Notes Satisfactory - Tested on 01.05.2025.

41

Test ID TC30 Category Functional Severity High

Objective Verify that the OCR function works with receipts of different layouts and font styles

Steps 1.Collect receipts from different stores with varying formats

2.Scan each receipt using the app

Expected The OCR extracts and interprets text accurately across different receipt formats.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC31 Category Functional Severity High

Objective Verify the OCR can handle lengthy receipts without truncation

Steps 1.Scan a long grocery receipt with more than 20 items

Expected The system extracts all items correctly without missing entries.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC32 Category Functional Severity High

Objective Verify that the system correctly distinguishes between kitchen-related and

non-kitchen items

Steps 1.Scan a receipt containing both kitchen and non-kitchen products

Expected The system filters and only adds kitchen-related items to inventory.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC33 Category Functional Severity High

Objective Verify that the system updates quantities instead of duplicating item

Steps 1.Scan a receipt containing items already in the inventory

Expected The system updates existing product quantities instead of adding duplicates.

Result/Notes Satisfactory - Tested on 01.05.2025.

42

Test ID TC34 Category Functional Severity Medium

Objective Verify OCR performance on faded or low-contrast receipts

Steps 1.Scan a faded receipt with light ink

Expected The system accurately extracts text or prompts the user for manual verification.

Result/Notes Failed - Tested on 01.05.2025.

Test ID TC35 Category Functional Severity High

Objective Verify that extracted product names are matched correctly with known kitchen

product datasets

Steps 1.Scan a receipt and allow the system to process it

Expected The system matches product names accurately with its kitchen product database.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC36 Category Functional Severity High

Objective Verify that the system recommends recipes using current inventory items

Steps 1.Navigate to the “Tarifler” section

2.Check suggested meals

Expected Recipes use available ingredients.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC37 Category Functional Severity Medium

Objective Verify users can join a household using the household ID

Steps 1.Navigate to "Eve Katıl"

2.Enter the household ID

Expected The user joins the household.

Result/Notes Satisfactory - Tested on 01.05.2025.

43

Test ID TC38 Category Functional Severity High

Objective Verify household creation works correctly

Steps 1.Navigate to "Household Management"

2.Click "Create Household"

3.Enter household name

Expected A new household is created.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC39 Category Functional Severity High

Objective Verify that users in the same household have a shared pantry

Steps 1. User A logs into the app and adds an item to the pantry

2. User B logs into the same household account on a different device

3. User B checks the pantry

Expected The pantry data is identical for both users, and the item added by User A is visible

to User B

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC40 Category Functional Severity High

Objective Verify that users can delete their accounts successfully

Steps 1. User logs into the app

2. User navigates to the account settings page

3. User selects the "Hesabı Sil" option

4. User confirms account deletion

5. User attempts to log in again using the deleted account credentials

Expected The account is deleted, and the user is unable to log in with the deleted

credentials. All associated data is removed as per the app's policy

Result/Notes Satisfactory - Tested on 01.05.2025.

44

Test ID TC41 Category Functional Severity High

Objective Verify that users in the same household can add items to the shopping list and

that it is visible to all household members

Steps 1. User A logs into the app

2. User A navigates to the shopping list section

3. User A adds an item to the shopping list

4. User B (who belongs to the same household) logs into their account

5. User B navigates to the shopping list section

Expected The item added by User A is visible in the shopping list for User B. All household

members can see and update the shared list.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC42 Category Functional Severity Medium

Objective Verify that users in the same household can add notes to the shopping list and

that other household members can see them

Steps 1. User A logs into the app

2. User A navigates to the notes section

4. User A adds a note (e.g., "Get whole wheat")

5. User B (who belongs to the same household) logs into their account

6. User B navigates to the notes section

Expected The note ("Get whole wheat") are visible to User B and other household members.

Result/Notes Satisfactory - Tested on 01.05.2025.

45

Test ID TC43 Category Functional Severity Medium

Objective Verify that items in the pantry are placed in the correct category based on their

type

Steps 1. User logs into the app

2. User adds various items to the pantry

3. User navigates to the pantry section and checks the category labels

Expected Items are automatically categorized correctly.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC44 Category Functional Severity Medium

Objective Verify that users can leave a household successfully.

Steps 1.Navigate to settings and select "Aile Hesabından Ayrıl”

2.Confirm the action when prompted

3.System removes the user from the household

Expected User successfully leaves the household and is redirected to the household

management screen.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC45 Category Functional Severity Medium

Objective Verify that duplicate email registration is not allowed

Steps 1.Enter an email already used for another account

2.Fill in the remaining fields and attempt to sign up

Expected The app displays an error message for duplicate email

Result/Notes Satisfactory - Tested on 01.05.2025.

46

Test ID TC46 Category Functional Severity Low

Objective Verify that invalid email formats are rejected

Steps 1.Enter an incorrectly formatted email (e.g., "user@com" or "user#email.com")

2.Click "Sign Up"

Expected The app displays an error message for user to enter a valid email

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC47 Category Functional Severity Medium

Objective Verify that duplicate products are prevented in the inventory

Steps 1.Attempt to add a product with an identical name

Expected System prompts to update quantity instead.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC48 Category Functional Severity Medium

Objective Verify that users can edit products in the shopping list

Steps 1.Navigate to the "Alışveriş Listem" section

2.Select an item and modify its name, quantity, or category

3.Save the changes

Expected The edited product details are updated in the shopping list successfully.

Result/Notes Satisfactory - Tested on 01.05.2025.

47

Test ID TC49 Category Functional Severity Medium

Objective Verify that users can delete products from the shopping list

Steps 1.Navigate to the "Alışveriş Listem" section

2.Select an item and choose the delete option

3.Confirm deletion

Expected The selected item is removed from the shopping list.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC50 Category Functional Severity High

Objective Verify that the system recommends recipes based on the meal type

Steps 1.Navigate to the “Tarifler” section

2.Choose a meal type

3.Check suggested meals

Expected Recipes are based on the chosen cuisine.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC51 Category Functional Severity Medium

Objective Verify the confirmation and deletion process for "Delete All Notes" in the Shopping

List

Steps 1.Navigate to "Alışveriş Listesi"

2.Ensure there are multiple notes present

3.Find and tap the "Tüm Notları Sil" button

4.A confirmation dialog appears

Expected All the notes get deleted

Result/Notes Satisfactory - Tested on 01.05.2025.

48

Test ID TC52 Category Functional Severity High

Objective Verify that changing the password fails if the current password entered is incorrect

Steps 1.Navigate to “Ayarlar” page

2.Tap”Şifremi Değiştir"

3.Enter an incorrect current password

4.Enter a valid new password and confirm it

5.Tap "Şifremi Değiştir"

Expected An error message is displayed indicating the current password was wrong. The

password is not changed in Firebase Authentication. The user remains on the

change password screen/dialog .

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC53 Category Functional Severity Medium

Objective Verify error handling when attempting to join a non-existent household

Steps 1.Sign as a user

2.Navigate to Household Setup

3.Tap "Eve Katıl"

4.Enter a Household ID that does not exist in Firestore

5.Tap the "Eve Katıl" button

Expected An error message is displayed indicating the current password was wrong. The

password is not changed in Firebase Authentication. The user remains on the

change password screen/dialog .

Result/Notes Satisfactory - Tested on 01.05.2025.

49

Test ID TC54 Category Non-Function

al

Severity Low

Objective Verify consistent application of theme colors across major screens

Steps 1.Navigate through key screens: Giriş, Ana Sayfa, Mutfağımdakiler, Tarifler,

Ayarlar

2.Visually inspect background colors, primary text colors, button colors, input field

backgrounds

Expected Colors should match the theme.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC55 Category Functional Severity Low

Objective Verify that the old household invitation code expires when a new household

invitation code gets generated

Steps 1.Navigate to the “Ayarlar” page and generate a new family invitation code

2.Try to enter to the household from another device with the old family invitation

code

Expected User should not be able to enter the household

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC56 Category Functional Severity Medium

Objective Verify that the app does not allow users to add an item to their pantry if the

amount is zero

Steps 1.Navigate to pantry click on the plus button

2.Choose an item and enter the amount as zero

Expected The screen should display a clear message indicating that amount cannot be zero

(e.g. Miktarı 0 olan ürünler eklenemez.).

Result/Notes Satisfactory - Tested on 01.05.2025.

50

Test ID TC57 Category Functional Severity Low

Objective Verify the display of the product list when a category contains zero items

Steps 1.Ensure a specific pantry category has no items associated with it

2.Navigate to "Mutfağımdakiler"

3.Select the empty category

4.View the product list screen

Expected The product list screen (Productlist) should display a clear message indicating that

there are no items in this category (e.g., "Ürün Yok.") instead of just an empty

space.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC58 Category Functional Severity Medium

Objective Verify editing item quantity directly from the Shopping List view

Steps 1.Navigate to the “Alışveriş Listesi” page

2.Locate an item with a quantity display

3.Tap on the quantity or specific +/- buttons next to it

4.Modify the quantity

Expected The quantity is updated in the UI for that item and saved to Firestore without

needing to navigate to a separate edit screen.

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC59 Category Functional Severity Medium

Objective Verify the behavior of the "Add Product" search when no results are found

Steps 1.Navigate to "Mutfağımdakiler"page

2.Enter a search query in the product search bar that is guaranteed not to match

any products in the database/search source

Expected The search results list remains empty or is cleared.

Result/Notes Satisfactory - Tested on 01.05.2025.

51

Test ID TC60 Category Functional Severity Medium

Objective Verify that the user is prevented from approving all OCR results if any single item

is still in an active editing state, and that appropriate feedback is provided

Steps 1.Open the app and successfully scan a receipt image

2.Locate an item in the list

3.Tap to the editing icon associated with that specific item

4.Do not tap the confirmation icon for the item being edited. Leave it in the active

editing state

5.Attempt to finalize the entire list by tapping the main "Hepsini Mutfağa Ekle"

button

Expected The main approval action is not executed. No data is saved to the pantry at this

point. An error message appears at the bottom of the screen displaying the

message "Lütfen önce tüm düzenlemeleri tamamlayın (onay ikonuna basın)."

Result/Notes Satisfactory - Tested on 01.05.2025.

Test ID TC61 Category Functional Severity Low

Objective Verify handling of special characters and emojis when adding a note to the

shopping list

Steps 1.Navigate to "Alışveriş Listesi"

2.Tap the "Notlar" option

3.In the note input field, enter text containing special characters and emojis

4.Save the note.

5.View the notes list.

Expected The note is saved successfully. The note text, including special characters and

emojis, is displayed correctly in the notes list without corruption or errors.

Result/Notes Satisfactory - Tested on 01.05.2025.

52

Test ID TC62 Category Functional Severity Medium

Objective Verify behavior when canceling the "Var Olan Aileye Katıl" process midway.

Steps 1.Sign up as a user and tap to "Yeni Aile Oluştur”

2.Enter a household name

3.Instead of tapping "Yeni Aile Oluştur", tap to the back icon

4.Attempt to tap "Yeni Aile Oluştur” again

Expected The process reset successfully. The previously entered household name was not

retained. The user could reinitiate the family creation process without issues.

Result/Notes Satisfactory - Tested on 01.05.2025.

53

6. Maintenance Plan and Details
To ensure long-term reliability and user satisfaction, On the Shelf will follow a

structured maintenance plan post-deployment. Regular updates will be scheduled to

address bug fixes, performance optimizations, and compatibility with new versions of

iOS and Android. The app's codebase, written in Flutter, allows for efficient

cross-platform maintenance from a single code repository. Firebase services,

including Firestore and Authentication, will be monitored to ensure backend stability

and security. In addition, automated testing and continuous integration pipelines will

be employed to catch regressions early during updates. As new features are

introduced, scalability and backward compatibility will be prioritized to maintain a

seamless experience for existing users.

54

7. Other Project Elements

7.1. Consideration of Various Factors in Engineering Design

7.1.1 Constraints

During the development of On the Shelf, several constraints shaped design,

implementation, and deployment decisions:

Technical Constraints

● Cross-Platform Constructability: The project was developed using a single

Flutter codebase to ensure seamless deployment across both iOS and

Android devices, but this limited the use of platform-specific customizations.

● Performance Limitations: The integration of OCR technology for receipt

scanning required careful optimization to ensure smooth performance on

devices with varying hardware capabilities.

● Energy Efficiency: In alignment with sustainability goals, the app had to be

designed with energy-efficient principles, placing limits on resource usage and

background processes.

User-Centered Constraints

● Accessibility and Usability: The UI was required to follow universal design

principles, balancing visual aesthetics with intuitive experience. This limited

the use of overly complex UI elements.

● User Effort Minimization: Features such as automatic OCR and household

synchronization were prioritized to reduce manual input, impacting the

structure and timing of data flows within the app.

55

Security and Legal Constraints

● Data Privacy Compliance: The app was developed in accordance with KVKK

and other relevant data privacy regulations, imposing constraints on how user

data could be stored, accessed, and shared.

● Secure Coding Practices: The project adhered to secure mobile development

standards, which imposed requirements on password handling, authentication

mechanisms, and database access.

Scalability & Maintainability Constraints

● Extensibility: The app architecture needed to support future features like

advanced recipe filters or sorting products. This required a modular structure

while maintaining simplicity to meet short-term development deadlines.

● Code Standards and Industry Practices: The team was expected to follow

modern mobile development standards, limiting the use of outdated libraries

or shortcuts in implementation.

Time and Resource Constraints

● Development Timeline: The app was developed under a 2 semester timeline,

including phases for implementation, testing, and final documentation.

● Team Size: With five developers, task allocation and prioritization became

critical, constraining the complexity of individual features and the overall

scope.

Environmental and Social Constraints

● Sustainability Alignment: The app needed to promote sustainable practices,

such as reducing food waste, while itself being environmentally friendly in

terms of resource usage.

● Market and Policy Alignment: The app's functionality had to align with

responsible consumption goals and comply with app store guidelines for

deployment.

56

7.1.2 Standards

● UML 2.5.1 for modeling

● IEEE 830 for requirements documentation

● IEEE for referencing style

7.2. Ethics and Professional Responsibilities

The team prioritized ethical considerations and professional responsibilities

throughout the development:

● User Privacy: Sensitive data such as allergies, household membership, and

inventory details are stored securely in Firebase. No data is shared with third

parties.

● Security Measures: Passwords are securely stored, and functions like

password change and account deletion require user confirmation to avoid

misuse.

● Transparency: Users are informed before performing critical actions like

leaving a household or deleting their account.

● Accessibility and Usability: The app is designed with a clear interface and

dark/light mode toggle to accommodate user preferences and needs.

● Data Integrity: OCR-generated data is editable by users to prevent incorrect

entries from impacting shelf or recipe results.

● Inclusive Design: The focus on allergies (instead of broad dietary

preferences) helps ensure features are grounded in medically relevant and

actionable needs.

57

7.3. Teamwork Details

7.3.1. Contributing and functioning effectively on the team to establish

goals, plan tasks, and meet objectives

Each team member contributed actively throughout the development of the

project. Gülbera focused primarily on UI design and user experience improvements,

ensuring the app interface remained intuitive and user-friendly. Emirhan worked on

OCR, image processing features, and product dataset preparation conducting

meetings with executives at Migros for dataset retrieval. Also conducted potential

funding meetings which later failed. Defne led backend development efforts,

managing the integration with Firebase and optimizing database interactions also,

contributed in backend functionalities. Ümmügülsüm contributed significantly to

Flutter development and implemented many of the user-facing features such as the

recipe suggestion and pantry. İrem worked on backend features like shopping list

modules and coordinated documentation efforts and also contributed to bug fixing of

the pages. Through weekly meetings and shared task boards, everyone stayed

aligned with the development timeline and completed their tasks effectively.

7.3.2. Helping creating a collaborative and inclusive environment

The team fostered a respectful and open environment where every member

felt comfortable sharing ideas and feedback. Decisions were made through

consensus, and all voices were heard, regardless of the task domain. Constructive

criticism and support were encouraged, promoting mutual growth and understanding.

Tools such as shared documents, messaging platforms, and version control systems

further supported collaboration.

58

7.3.3. Taking lead role and sharing leadership on the team

Leadership responsibilities were shared at different stages. Gülbera took the

lead for implementing frontend and merging backend and frontend features. Defne

led the database structure design and backend implementation, guiding the

integration with Firebase services. Emirhan coordinated the OCR module

development and dataset preparation, proposing algorithms and testing workflows.

Ümmügülsüm led during backend implementation of functionalities. İrem took

initiative during the bug fixes and backend enhancement, ensuring quality standards

and completeness. This rotation of leadership allowed everyone to develop project

management skills and take ownership of critical components.

7.3.4. Meeting objectives

According to our initial project plan, we had set key milestones such as

completing the requirements analysis, designing the UI, implementing core features

(OCR-based product scanning, shared shoppinglist, inventory management, and

allergy-aware recipe recommendations), and conducting final testing before release.

All major objectives were met on schedule. And now, before the demo our all core

features are ready and we will have the chance to enhance our features in our next

versions. We successfully adhered to our project plan while maintaining quality and

performance benchmarks.

59

7.4 New Knowledge Acquired and Applied

Throughout the project, the team gained and applied new knowledge in the

following areas:

● Flutter App Development: Team members learned how to build a mobile

application using Flutter, including widget management, state handling, and

responsive UI design.

● Firebase Integration: Skills were gained in using Firebase Authentication,

Firestore, and real-time database synchronization for user and household data.

● OCR Integration: The team explored and integrated OCR tools for scanning

receipts, learning how to preprocess and extract text data efficiently.

● UI/UX Design Principles: Best practices for mobile UX design were studied and

applied, such as clear settings layouts, confirmation dialogs, and theme

switching.

● Team Collaboration: Version control with Git and the issue tracker via Jira

improved workflow efficiency and collaboration.

● Requirement Engineering: The team revised functional and non-functional

requirements based on evolving goals and technical feasibility.

60

8. Conclusion and Future Work

Throughout the development of On the Shelf, we have accomplished several

key milestones that transformed our initial idea into a functional mobile application.

We began by conducting market research and user surveys to identify common pain

points in grocery management. Using those insights, we designed wireframes and

UIs in Figma, then implemented core features such as inventory tracking, shopping

list generation, and receipt scanning using OCR technology. We developed the app

using Flutter for cross-platform compatibility and integrated Firebase as the backend.

Agile development practices allowed us to work iteratively, test frequently, and adapt

to feedback, ultimately leading to a stable and user-friendly prototype.

This project has also been a significant learning experience for our entire

team. As our first time developing a cross-platform mobile app, we were introduced

to new technologies and frameworks, and we strengthened our ability to collaborate

effectively in a team environment. We learned how to manage a full software

development lifecycle from ideas and design to implementation and testing. Beyond

the technical aspects, we also deepened our skills in user research, product thinking,

and sustainable design. Working on a real-world problem and seeing our solution

come to life was both educational and fulfilling.

Looking ahead, we have several plans to further improve and expand On the

Shelf. One of our primary goals is to improve the OCR functionality by integrating

advanced machine learning techniques to handle a wider range of receipt formats

with greater accuracy. We also plan to include personalized features such as

consumption analytics and smart reminders. In addition, we aim to integrate

third-party grocery APIs for real-time price comparisons and item suggestions. Most

importantly, we plan to officially publish the app on both the App Store and Google

Play Store to make it widely available. With further development and continuous user

feedback, we believe On the Shelf can grow into a practical and sustainable tool for

households around Türkiye.

61

9. User Manual

9.1. Login, Sign Up and Forgot Password

Login Screen:
● Enter your registered email and password, then tap "Giriş yap" to access your

account.

● If you don’t have an account, tap "Üye ol" below the login button.

Sign Up Screen:
● Fill in your name, email address, and a secure password. Tap "Üye ol" to

create your account.

● If you already have an account, tap "Giriş Yap" to return to the previous

screen.

62

Forgot Password Screen:
● If you’ve forgotten your password, tap "Forgot Password" on the Login screen.

● Enter your email address and follow the instructions sent to your inbox to

reset your password.

9.2. Household Setup – Create or Join

After signing up or logging in for the first time, you’ll be asked to set up your

household.

You can choose to either:

Create a New Household:

● Enter a household name and tap "Aileyi oluştur".

63

Join an Existing Household:

● Enter the Household Invitation Code generated by an existing member and

tap "Katıl".

● Once you create or join a household, you’ll be taken to the Home Page

created for that household.

9.3. Home Page Overview

The Home Page includes four main sections that are accessible via the buttons.

● Fişlerim (My Receipts): View and manage your scanned or uploaded

grocery receipts.

● Tariflerim (My Recipes): Browse and save recipes based on your allergies

and available ingredients.

● Alışveriş Listem (My Shopping List): View and edit your shopping list.

64

● Mutfağımdakiler (My Pantry): View and manage the items currently in your

kitchen.

9.4 Managing Your Pantry (Mutfağımdakiler)

● Tap "Mutfağımdakiler" to access your pantry.

● This page displays your pantry items, organized into 7 categories for easy

browsing.

● To add a new item, tap the "+" (plus) button at the top-right corner of the

screen.

○ In the search bar, type the name of the item you want to add.

○ Once you find the item, tap the "+" button next to its name.

○ Enter the quantity of the item in the pop-up window.

○ Tap "Ekle" (Add) to confirm.

● You can then go back and open the relevant category to see the item listed

with the quantity you entered.

65

9.5. Viewing and Editing Items in a Category

● When you tap on a specific category in your pantry, you’ll see a list of all items

stored under that category.

● From this screen, you can update item quantities in two ways:

○ Tap the “+” or “–” buttons below each item to increase or decrease the

quantity.

○ Tap the edit icon at the top-right corner to enter a new quantity

manually.

● To remove an item from your pantry, tap the trash/delete icon located at the

top-right corner of the item card.

● A prompt will appear asking if you'd like to add the deleted item to your

shopping list:

○ Tap “Evet” (Yes) to send the item to your Shopping List before it's

deleted from the pantry.

○ Tap “İptal” (Cancel) if you do not want to add it to the Shopping List the

item will still be removed from your pantry.

66

9.6. Using the Shopping List (Alışveriş Listem)

● When you return to the Home Page and tap "Alışveriş Listem", you’ll see your

current shopping list.

○ If you previously chose "Yes" when deleting a pantry item, it will now

appear here.

67

9.7. Adding and Managing Products

● To add a new product, tap on the search bar at the top of the screen and type

the name of the item.

● When it appears in the results, tap the shopping basket icon on the right side.

● Enter the quantity and tap to confirm.

● You can update quantities in two ways:

○ Use the “+” and “–” buttons below each item.

○ Tap on the item itself to manually enter the desired quantity.

68

● To mark an item as purchased, tap the empty circle to the left of the product.

○ The item will be crossed out and moved to the bottom of the list.

○ This helps prioritize items that still need to be bought.

● To permanently delete an item from the list, simply swipe left on the item.

69

9.8. Notes Section (Notlarım)

● At the top of the Alışveriş Listem page, you’ll see two tabs: "Alışveriş Listem" |

"Notlarım"

● Tap "Notlarım" to switch to the notes section, where you and other household

members can leave notes for everyone in the household to see.

● To add a note, type your message in the input field and submit it.

You can edit your own notes after posting them by:

○ Tapping the edit icon on the left side of the note.

○ A pop-up will appear where you can update your text.

○ Confirm the changes to save your edited note.

● To delete your own note, tap the trash icon on the right side of the note.

This will remove the note from the shared list.

● If you've completed your shopping and want to clear all notes at once, tap the

trash icon at the top-right corner of the page.

● A confirmation will appear before deleting to prevent accidental removal of all

notes.

70

9.9. Recipes Section (Tariflerim)

● From the Home Page, tap "Tariflerim" to access your saved recipes.

● Here, you can browse through the recipes you've previously saved and view

their instructions at any time.

71

9.10. Generating New Recipes

● To create new recipe suggestions, tap the "+" (plus) button at the bottom-right

corner of the screen.

● You’ll be asked to select the household members you’re cooking for.

○ The app will take each selected member’s allergies into account while

generating recipe suggestions.

● Then, choose the meal type, such as "Ana Yemek" (Main Course) or "Tatlı"

(Dessert).

72

● The app will generate 3 recipe suggestions based on your selections.

● Tap on any recipe to view its detailed instructions and ingredients.

● If you like a recipe, tap the save icon at the top-right corner to add it to your

saved list in Tariflerim.

73

9.11. Receipts Section (Fişlerim)

● From the Home Page, tap "Fişlerim" to view your saved receipts.

● To scan a new receipt, tap the "+" (plus) button at the bottom-right corner of

the screen.

● You will be given two options:

○ Camera : Use your device’s camera to scan a physical receipt.

○ Gallery : Choose an existing receipt photo from your gallery.

● Once you select a receipt, the app will use OCR to extract product

information.

74

9.12. Reviewing and Editing OCR Results

● The OCR results will appear as a list of products with their; Name, quantity,

unit.

● If any information was scanned incorrectly, you can edit these fields directly

before saving the receipt.

75

9.13. Settings Page (Ayarlar)

● From the Home Page, tap the settings icon (⚙) at the top-right corner of the

screen to access the Settings page.

76

Available Settings Options

● Change Password
○ Enter your current password and your new password, then confirm the

change.

● Edit Allergies
○ Check or uncheck items from the allergy list to update your

preferences.

○ These settings help personalize recipe suggestions and ensure safety.

● Generate Family Invitation Code
○ Tap this option to generate a unique code that others can use to join

your household.

77

● Leave Household
○ If you no longer wish to be part of your current household, select this

option to leave the household group.

● Delete Account
○ Permanently delete your account and all associated data.

● Log Out
○ Sign out of the app and return to the login screen.

78

10. Glossary
● OCR: Optical Character Recognition

● AI: Artificial Intelligence

● UML: Unified Modelling Language

● IEEE: Institute of Electrical and Electronics Engineers

● UI: User Interface

● KVKK: Turkish Data Protection Law

● API: Application Programming Interface

79

11. References

[1] "Whisk" [Online]. Available: https://www.whiskapp.net/. [Accessed 01 May 2025].

[2] "KitchenPal" [Online]. Available: http://kitchenpalapp.com/en/. [Accessed 01 May

2025].

[3] "Paprika" [Online]. Available: https://www.paprikaapp.com/. [Accessed 01 May

2025].

[4] "What’s Left" [Online]. Available: https://tellmewhatsleft.de/index_en.html.

[Accessed 01 May 2025].

80

	
	1. Introduction
	1.1 Overview
	1.2 Competitors and Alternative Solutions
	1.3 Why On the Shelf?

	2. Requirements Details
	2.1 Overview
	2.2 Functional Requirements
	2.3 Non-functional Requirements
	2.4 Pseudo Requirements

	3. Final Architecture and Design Details
	3.1 Overview
	3.2 Use Case Diagram
	
	3.3 Scenarios
	
	3.4 High-Level Architecture Diagram
	
	3.5 Class Diagram
	3.6 Subsystem Decomposition Diagram
	3.7 Deployment Diagram
	3.8 Hardware/Software Mapping Diagram
	3.9 Data Flow Diagram
	3.10 Activity Diagrams

	4. Development/Implementation Details
	4.1 Database
	
	4.2 Backend
	
	4.3 Frontend
	4.4 Cloud Run

	5. Test Cases and Results
	
	6. Maintenance Plan and Details
	
	7. Other Project Elements
	7.1. Consideration of Various Factors in Engineering Design
	7.1.1 Constraints
	7.1.2 Standards

	7.2. Ethics and Professional Responsibilities
	7.3. Teamwork Details
	7.3.1. Contributing and functioning effectively on the team to establish goals, plan tasks, and meet objectives
	7.3.2. Helping creating a collaborative and inclusive environment
	
	7.3.3. Taking lead role and sharing leadership on the team
	7.3.4. Meeting objectives

	
	
	
	
	7.4 New Knowledge Acquired and Applied

	8. Conclusion and Future Work
	
	9. User Manual
	9.1. Login, Sign Up and Forgot Password

	
	
	9.2. Household Setup – Create or Join

	
	9.3. Home Page Overview

	
	9.4 Managing Your Pantry (Mutfağımdakiler)

	
	
	9.5. Viewing and Editing Items in a Category

	
	9.6. Using the Shopping List (Alışveriş Listem)

	
	
	9.7. Adding and Managing Products

	
	
	9.8. Notes Section (Notlarım)

	
	9.9. Recipes Section (Tariflerim)

	
	9.10. Generating New Recipes

	
	
	9.11. Receipts Section (Fişlerim)

	
	9.12. Reviewing and Editing OCR Results

	
	
	9.13. Settings Page (Ayarlar)

	
	
	
	
	10. Glossary
	
	11. References

